Limite sympathique!

Partie A: Quelques exemples

1) On considère dans cette question, pour tout entier $n \ge 1$, l'équation

$$x^2 + \frac{1}{n}x - 1 = 0$$
,

d'inconnue x.

- a) Soit n un entier naturel non nul. Démontrer que cette équation admet une unique solution réelle positive; on la note x_n . Exprimer x_n en fonction de n.
- b) Démontrer que la suite $(x_n)_{n\geq 1}$ converge; on note x_∞ sa limite.
- c) Démontrer que x_∞ est solution de l'équation

$$x^2 - 1 = 0$$
.

2) On considère dans cette question, pour tout entier $n \ge 1$, l'équation

$$\frac{1}{n}y^2 - y - 1 = 0$$
,

d'inconnue y.

- a) Soit n un entier naturel non nul. Démontrer que cette équation admet une unique solution réelle positive; on la note y_n .
- b) Démontrer que la suite $(y_n)_{n\geq 1}$ diverge.

3) On considère dans cette question, pour tout entier $n \ge 1$, l'équation

$$z^3 + \frac{1}{n}z^2 - 1 = 0$$
,

d'inconnue z.

- a) Soit n un entier naturel non nul.
 - i) Étudier les variations de la fonction $z \mapsto z^3 + \frac{1}{n}z^2 1$ sur l'intervalle $[0, +\infty[$.
 - ii) En déduire que cette équation admet une unique solution réelle positive; on la note z_n . Démontrer que z_n appartient à l'intervalle] 0,1 [.
- b) Démontrer que la suite $(z_n)_{n\geqslant 1}$ est convergente.

On pourra s'intéresser au signe du réel $z_{n+1}^3 + \frac{1}{n} z_{n+1}^2 - 1$.

c) On note z_{∞} la limite de la suite $(z_n)_{n\geq 1}$. Démontrer que z_{∞} est solution de l'équation

$$z^3 - 1 = 0$$
.

4) On considère dans cette question, pour tout entier $n \ge 1$, l'équation

$$\frac{1}{n}t^3 - t^2 - 1 = 0,$$

d'inconnue t.

- a) Soit n un entier naturel non nul. Démontrer que cette équation admet une unique solution réelle; on la note t_n .
- b) La suite $(t_n)_{n\geq 1}$ est-elle convergente? Si oui, quelle est sa limite?

Partie B: Polynômes sympathiques

Dans les deux prochaines parties, on considère un entier $d \ge 1$. La fonction P est un *polynôme de degré* au plus d s'il existe des réels a_0, a_1, \ldots, a_d tels que

$$P(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_2 x^2 + a_1 x + a_0$$

pour tout réel x.

Soit $P: x \mapsto a_d x^d + a_{d-1} x^{d-1} + \dots + a_2 x^2 + a_1 x + a_0$ un polynôme de degré au plus d. On dit que :

- ▶ P est initialement sympathique si $a_0 = -1$ et si $a_k \ge 0$ pour tout entier k tel que $1 \le k \le d$;
- \triangleright *P* est *faussement sympathique* si $a_0 = -1$ et si $a_k \le 0$ pour tout entier *k* tel que 1 ≤ *k* ≤ *d*;
- ▶ P est *vraiment sympathique* si $a_0 = -1$ et s'il existe un entier k tel que $1 \le k \le d 1$ et pour lequel $a_1 \le 0, a_2 \le 0, \dots, a_k \le 0$ et $a_{k+1} > 0, a_{k+2} \ge 0, \dots, a_d \ge 0$.

Enfin, on dit que P est sympathique s'il est initialement, faussement ou vraiment sympathique.

- 5) Quels sont les polynômes qui sont à la fois faussement sympathiques et initialement sympathiques?
- 6) Démontrer que tout polynôme faussement sympathique est
 - a) strictement négatif sur l'intervalle $[0, +\infty[$;
 - b) décroissant sur l'intervalle [0,+∞[.
- 7) Soit P un polynôme vraiment sympathique et initialement sympathique.
 - a) Démontrer que P est strictement croissant sur l'intervalle $[0, +\infty[$;
 - b) Démontrer que l'équation P(x) = 0 admet une unique solution strictement positive.
- 8) Soit P un polynôme vraiment sympathique mais pas initialement sympathique.
 - a) Démontrer qu'il existe un réel b > 0, un entier $\ell \ge 0$ et un polynôme Q vraiment sympathique tels que

$$P'(x) = bx^{\ell} Q(x)$$

pour tout réel x.

- b) Démontrer qu'il existe un réel r > 0 tel que le polynôme P vérifie les quatre propriétés suivantes :
 - ▶ P est décroissant sur l'intervalle [0, r];
 - \triangleright P est strictement croissant sur l'intervalle $[r, +\infty[$;
 - ▶ P est strictement négatif sur l'intervalle [0, r];
 - ▷ l'équation P(x) = 0 admet une unique solution dans l'intervalle $[r, +\infty[$.
- 9) Quels sont les polynômes sympathiques P pour lesquels l'équation P(x) = 0 admet au moins une solution strictement positive? Donner, dans ce cas, le tableau de signes de P sur l'intervalle $[0, +\infty[$.

Partie C : De la suite dans les idées

On considère désormais des polynômes vraiment sympathiques P_1, P_2, \dots Puisque ces polynômes sont de degré au plus d, on peut écrire chaque polynôme P_n sous la forme

$$P_n: x \mapsto a_{d,n}x^d + a_{d-1,n}x^{d-1} + \dots + a_{2,n}x^2 + a_{1,n}x + a_{0,n}.$$

On suppose en outre, pour tout entier k tel que $0 \le k \le d$, que la suite $(a_{k,n})_{n \ge 1}$ est convergente; on note $a_{k,\infty}$ sa limite.

On considère alors le polynôme P_{∞} défini par

$$P_{\infty}: x \mapsto a_{d,\infty}x^d + a_{d-1,\infty}x^{d-1} + \dots + a_{2,\infty}x^2 + a_{1,\infty}x + a_{0,\infty}.$$

Enfin, pour tout entier $n \ge 1$, on note x_n l'unique solution strictement positive de l'équation $P_n(x) = 0$. Ci-dessous, on étudie la convergence éventuelle de la suite $(x_n)_{n \ge 1}$.

- 10) Soit t un réel fixé. Démontrer que la suite $(P_n(t))_{n\geq 1}$ converge vers $P_\infty(t)$.
- 11) Démontrer que le polynôme P_{∞} est sympathique.
- 12) On suppose dans cette question que le polynôme P_{∞} est vraiment sympathique, et on note x_{∞} l'unique solution strictement positive de l'équation $P_{\infty}(x) = 0$.
 - a) Soit u et v deux réels tels que $0 < u < x_{\infty} < v$. Démontrer qu'il existe un entier $M_{u,v}$ tel que $P_n(u) < 0 < P_n(v)$ pour tout entier $n \ge M_{u,v}$.
 - b) En déduire que la suite $(x_n)_{n \ge 1}$ converge vers x_∞ .
- 13) On suppose dans cette question que le polynôme P_{∞} est faussement sympathique. Démontrer que $(x_n)_{n\geqslant 1}$ diverge vers $+\infty$.
- 14) Retrouver les résultats de la partie A.